College Physics (4th Edition)

Published by McGraw-Hill Education
ISBN 10: 0073512141
ISBN 13: 978-0-07351-214-3

Chapter 9 - Problems - Page 363: 51

Answer

The pressure at the narrow end of the segment is $1.12\times 10^5~Pa$

Work Step by Step

We can use the continuity equation to find the speed $v_2$ that the water moves through the narrow end of the segment: $A_2~v_2 = A_1~v_1$ $v_2 = \frac{A_1~v_1}{A_2}$ $v_2 = \frac{(50.0\times 10^{-4}~m^2)~(0.040~m/s)}{0.50\times 10^{-4}~m^2}$ $v_2 = 4.0~m/s$ The speed of the water through the narrow end of the segment is $4.0~m/s$ We can use Bernoulli's equation to find the pressure $P_2$ at the narrow end of the segment: $P_2 + \frac{1}{2}\rho~v_2^2 = P_1+\frac{1}{2}\rho~v_1^2$ $P_2 = P_1+\frac{1}{2}\rho~(v_1^2-v_2^2)$ $P_2 = (1.20\times 10^5~Pa)+(\frac{1}{2})(10^3~kg/m^3)[(0.040~m/s)^2-(4.0~m/s)^2]$ $P_2 = 1.12\times 10^5~Pa$ The pressure at the narrow end of the segment is $1.12\times 10^5~Pa$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.