Answer
(a) $F = 1.8\times 10^7~N$
(b) $a = 8200~m/s^2$
Work Step by Step
We can find the magnitude of the force:
$F~t = \gamma~m~v$
$F~t = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}~m~v$
$F = \frac{m~v}{t~\sqrt{1-\frac{v^2}{c^2}}}$
$F = \frac{(2200~kg)~(0.70~c)}{(3.6\times 10^4~s)~\sqrt{1-\frac{(0.70~c)^2}{c^2}}}$
$F = \frac{(2200~kg)~(0.70)(3.0\times 10^8~m/s)}{(3.6\times 10^4~s)~\sqrt{1-(0.70)^2}}$
$F = 1.8\times 10^7~N$
(b) We can find the initial acceleration:
$F = m~a$
$a = \frac{F}{m}$
$a = \frac{1.8\times 10^7~N}{2200~kg}$
$a = 8200~m/s^2$