College Physics (4th Edition)

Published by McGraw-Hill Education
ISBN 10: 0073512141
ISBN 13: 978-0-07351-214-3

Chapter 12 - Problems - Page 463: 20

Answer

We can rank the sound waves in order of displacement amplitude, from largest to smallest: $e \gt d = f \gt a \gt b \gt c$

Work Step by Step

We can write an expression for the displacement amplitude: $s_0 = \frac{P_0}{\rho~v~\omega} = \frac{P_0}{2\pi~f~\rho~v}$ We can write an expression for the displacement amplitude in each case: (a) $s_0 = \frac{0.05~Pa}{2\pi~(400~Hz)~\rho~v} = \left(\frac{1.25\times 10^{-4}}{2\pi~\rho~v}\right)~m$ (b) $s_0 = \frac{0.01~Pa}{2\pi~(400~Hz)~\rho~v} = \left(\frac{2.5\times 10^{-5}}{2\pi~\rho~v}\right)~m$ (c) $s_0 = \frac{0.01~Pa}{2\pi~(2000~Hz)~\rho~v} = \left(\frac{5.0\times 10^{-6}}{2\pi~\rho~v}\right)~m$ (d) $s_0 = \frac{0.05~Pa}{2\pi~(80~Hz)~\rho~v} = \left(\frac{6.25\times 10^{-4}}{2\pi~\rho~v}\right)~m$ (e) $s_0 = \frac{0.05~Pa}{2\pi~(16~Hz)~\rho~v} = \left(\frac{3.125\times 10^{-3}}{2\pi~\rho~v}\right)~m$ (f) $s_0 = \frac{0.25~Pa}{2\pi~(400~Hz)~\rho~v} = \left(\frac{6.25\times 10^{-4}}{2\pi~\rho~v}\right)~m$ We can rank the sound waves in order of displacement amplitude, from largest to smallest: $e \gt d = f \gt a \gt b \gt c$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.