Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 9 - Exercises and Problems - Page 173: 91

Answer

a) $\frac{M}{a+1}$ b) $x_{cm}=\frac{ML}{2+a}$ c) These are not surprising, for they are the equations for when a rod is uniform, which is the case when a=0.

Work Step by Step

a) We know that the mass is the integral of the equation over the length of the rod: $m = \int_0^L \frac{Mx^a}{L^{1+a}}dx=\frac{M}{a+1}$ b) $x_{cm} = \int_0^L x \frac{Mx^a}{L^{1+a}}dx$ $x_{cm} = \int_0^L \frac{Mx^{1+a}}{L^{1+a}}dx$ $x_{cm}=\frac{ML}{2+a}$ c) These are not surprising, for they are the equations for when a rod is uniform, which is the case when a=0.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.