Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 8 - Exercises and Problems - Page 147: 33

Answer

$Altitude=17118.6\space km$ $Speed= 1.448\space km/s$

Work Step by Step

(b) Here we use the equation $T=\sqrt {\frac{4\pi^{2}r^{3}}{GM_{M}}}$ where, T - Orbital period, V - speed of the spacecraft, $M_{M}$ - mass of the Mars, G - universal gravitational constant, r - radius of the orbit. $T=\sqrt {\frac{4\pi^{2}r^{3}}{GM_{M}}}$ ; Let's plug known values into this equation. $T= 2\pi \sqrt {\frac{r^{3}}{GM_{M}}}$ $1.03\times24\times3600\space s=2\pi \sqrt {\frac{r^{3}}{6.67\times10^{-11}\space Nm^{2}/kg^{2}\times0.642\times10^{24}\space kg}}$ $14163.5\space s= \sqrt {\frac{r^{3}}{4.3\times10^{13}m^{3}/s^{2}}}$ $14163.5\space s\times\sqrt {4.3\times10^{13}m^{3}/s^{2}}=\sqrt {r^{3}}$ $8.6\times10^{21}m^{3}=r^{3}$ $20508.6\space km=r$ Altitude (h) = r - radius of the mars = (20508.6-3390) km h = 17118.6 km (a) Here we use the equation $V=\sqrt {\frac{GM_{M}}{r}}$ to find the speed of the spacecraft. $V=\sqrt {\frac{GM_{M}}{r}}$; Let's plug known values into this equation $V=\sqrt {\frac{6.67\times10^{-11}\space Nm^{2}/kg^{2}\times0.642\times10^{24}\space kg}{20508.6\space \times10^{3}m}}$ $V=\sqrt {\frac{4.3\times10^{13}}{20.51\times10^{6}}}\space m/s= 1148 \space m/s=1.448\space km/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.