Answer
$-0.4\space aN$
Work Step by Step
Given that the potential energy of an electron, $U=1.27x^{2}-0.26x^{4}$ where x - Stretch of the bond.
$U=1.27x^{2}-0.26x^{4}$
To find the force on the electron we have to differentiate the above equation by x.
$-\frac{d}{dx}U=-1.27\frac{d}{dx}x^{2}+\frac{d}{dx}x^{4}$
$F(x)= 1.27\times2x-0.26\times4x^{3}$
$F(x)=-2.54x+1.04x^{3}$
Let's apply x= 1.47 nm & we get,
$F(1.47)=-2.54\times1.47+1.04\times(1.47)^{3}$
$F(x)= -0.4\space aN$