Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 3 - Exercises and Problems - Page 53: 92

Answer

$(a)\space \vec r=R(cos\theta\space i+sin\theta\space j)$ $(b)\space \theta=(\frac{2\pi}{T})\space t$ $(c)\space a=\frac{V^{2}}{R}$

Work Step by Step

Please see the attached image first. (a) Let's assume point P(x,y) is the position of the particle at a certain time & we can write the position vector $(\vec r)$ as follows. $\vec r=(OA)i+(AP)j= Rcos\theta\space i+Rsin\theta\space j$ $\vec r=R(cos\theta\space i+sin\theta\space j)$ (b) We know, that the rotation period (T) of the particle can express as follows. $T=\frac{2\pi}{\omega}-(1)$ Also we know that the $\frac{\theta}{t}=\omega-(2)$ Let's apply the value of $\omega$ from equation (1) into (2). Then we get, $\frac{\theta}{t}=\frac{2\pi}{T}=\gt\theta=(\frac{2\pi}{T})t$ (c)$\space \vec r=R(cos\theta\space i+sin\theta\space j)$ Let's differentiate this equation by t & we get the velocity of the particle. $\frac{d}{dt}\vec r=R(\frac{d}{dt}cos\theta\space i+\frac{d}{dt}sin\theta\space j)$ $\vec V=R(-sin\theta\times\frac{d\theta}{dt}\space i+cos\theta\times\frac{d\theta}{dt}\space j)$ We know, $d\theta /dt=\omega,$ So we can get, $\vec V=R\omega(-sin\theta\space i+cos\theta\space j)$ Now we can differentiate the above velocity vector by t & we get the acceleration vector of the particle. $\frac{d}{dt}\vec V= R\omega(\frac{-d}{dt}sin\theta\space i +\frac{d}{dt}cos\theta \space j)$ $\vec a= \frac{d}{dt}\vec V= R\omega(-cos\theta\frac{d\theta}{dt}\space i -sin\theta\frac{d\theta}{dt} \space j)$ $\vec a= -R\omega^{2}(cos\theta\space i-sin\theta\space j)-(3)$ The magnitude of the acceleration$= \sqrt {(R\omega^{2}cos\theta)^{2}+(-R\omega^{2}sin\theta)^{2}}$ $=\sqrt {R^{2}\omega^{4}(cos^{2}\theta +sin^{2}\theta)}=R\omega^{2}$ We know $V=r\omega$ & we get, $a=R(\frac{V}{R})^{2}=\frac{V^{2}}{R}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.