Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 3 - Exercises and Problems - Page 52: 78

Answer

$(a)\space \sqrt {2gh+\frac{16gh}{(\sqrt 2 +4)^{2}}}$ $(b)\space 62.4^{\circ} $

Work Step by Step

Please see the image first. (a) To the AC motion, Let's apply the equation $V^{2}=u^{2}+2aS$ $\uparrow V^{2}=u^{2}+2aS$ Let's apply known values to this equation. $0^{2}=V^{2}+2(-g)h$ $V=\sqrt {2gh}$ To the AB motion, Let's apply equation $S=ut+\frac{1}{2}at^{2}$ $\uparrow S=ut+\frac{1}{2}at^{2}$ Let's plug known values into this equation. $-h=\sqrt {2gh}\space t+\frac{1}{2}(-g)t^{2}$ $gt^{2}-2\sqrt {2gh}\space t -2h=0$ This is a quadratic formula. So we can write the results as follows. $t=\frac{-(-2\sqrt {2gh})\space \pm \sqrt {8gh\space+8gh}}{2g}= \frac{2\sqrt {2gh} \space \pm 4\sqrt {gh}}{2g}$ Since time is a positive value, we neglect the negative value and we get, $t=\sqrt \frac{h}{g}\space \frac{(\sqrt 2+4)}{2}$ To AB motion let's apply equation $S=ut$ $\rightarrow S=ut$ Let's plug known values into this equation. $2h=u\sqrt \frac{h}{g}\space \frac{(\sqrt 2+4)}{2}$ $u=\frac{4\sqrt {gh}}{\sqrt 2\space +4}$ Magnitude of the initial velocity$=\sqrt {V^{2}+u^{2}}$ $\space =\sqrt {2gh+\frac{16gh}{(\sqrt 2 +4)^{2}}}$ (b) $tan\theta = \frac{V}{u}= \sqrt {2gh}\times\frac{(\sqrt 2)+4}{4\sqrt {gh}}$ $\theta = 62.4^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.