Answer
$102\space m$
Please see the attached image before you see the work steps.
Work Step by Step
Please see the attached image.
We know 1 km = 1000 m & we can multiply the velocity by 1000 m/km, also 1 h = 3600 s, then we can use the 3600 s/h conversion factor and gives,
$u= 45\space km/h = (\frac{45\space km}{h})(\frac{1000\space m}{km})(\frac{h}{3600\space s})$
$\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=\frac{50}{4}\space m/s$
$\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=12.5\space m/s$
Let's apply the equation $V^{2}=U^{2}+2aS$ to find the displacement of the vehicle before it stops.
$\rightarrow\space V^{2}=U^{2}+2aS $
$\space\space\space\space\space\space\space 0\space\space=(12.5\space m/s)^{2}+\space 2\times(-0.766\space m/s^{2})S$
$\space\space\space\space\space\space\space 0\space\space= 156.25\space m^{2}/s^{2}-\space 1.532\space m/s^{2}\times S$
$1.532S=156.25\space m$
$\space\space\space\space\space\space\space\space S=102\space m$
Driver need to hit the brake 102 m far from the moose.