General Chemistry: Principles and Modern Applications (10th Edition)

Published by Pearson Prentice Hal
ISBN 10: 0132064529
ISBN 13: 978-0-13206-452-1

Chapter 17 - Additional Aspects of Acid-Base Equilibria - Exercises - Titration Curves - Page 778: 41

Answer

(a) $pH = 2.87$ (b) $pH = 3.51$

Work Step by Step

(a) 1000ml = 1L 25ml = 0.025 L 10ml = 0.01 L 1. Find the numbers of moles: $C(HNO_2) * V(HNO_2) = 0.132* 0.025 = 3.3 \times 10^{-3}$ moles $C(NaOH) * V(NaOH) = 0.116* 0.01 = 1.15 \times 10^{-3}$ moles 2. Write the acid-base reaction: $HNO_2(aq) + NaOH(aq) -- \gt NaNO_2(aq) + H_2O(l)$ - Total volume: 0.025 + 0.01 = 0.035L 3. Since the base is the limiting reactant, only $ 0.00116$ mol of the compounds will react. Therefore: Concentration (M) = $\frac{n(mol)}{Volume(L)}$ $[HNO_2] = 0.0033 - 0.00116 = 2.14 \times 10^{-3}$ moles. Concentration: $\frac{2.14 \times 10^{-3}}{ 0.035} = 0.0611M$ $[NaOH] = 0.00116 - 0.00116 = 0$ $[NaNO_2] = 0 + 0.00116 = 0.00116$ moles. Concentration: $\frac{ 0.00116}{ 0.035} = 0.0332M$ 4. Calculate the $pK_a$ for the acid $pKa = -log(Ka)$ $pKa = -log( 7.2 \times 10^{- 4})$ $pKa = 3.14$ 5. Using the Henderson–Hasselbalch equation: $pH = pKa + log(\frac{[Base]}{[Acid]})$ $pH = 3.14 + log(\frac{0.0332}{0.0611})$ $pH = 3.14 + log(0.542)$ $pH = 3.14 + (-0.266)$ $pH = 2.87$ ------- (b) 1000ml = 1L 25ml = 0.025 L 20ml = 0.02 L 1. Find the numbers of moles: $C(HNO_2) * V(HNO_2) = 0.132* 0.025 = 3.3 \times 10^{-3}$ moles $C(NaOH) * V(NaOH) = 0.116* 0.02 = 2.31 \times 10^{-3}$ moles 2. Write the acid-base reaction: $HNO_2(aq) + NaOH(aq) -- \gt NaNO_2(aq) + H_2O(l)$ - Total volume: 0.025 + 0.02 = 0.045L 3. Since the base is the limiting reactant, only $ 0.00232$ mol of the compounds will react. Therefore: Concentration (M) = $\frac{n(mol)}{Volume(L)}$ $[HNO_2] = 0.0033 - 0.00232 = 9.8 \times 10^{-4}$ moles. Concentration: $\frac{9.8 \times 10^{-4}}{ 0.045} = 0.0218M$ $[NaOH] = 0.00232 - 0.00232 = 0$ $[NaNO_2] = 0 + 0.00232 = 0.00232$ moles. Concentration: $\frac{ 0.00232}{ 0.045} = 0.0516M$ 4. Using the Henderson–Hasselbalch equation: $pH = pKa + log(\frac{[Base]}{[Acid]})$ $pH = 3.14 + log(\frac{0.0516}{0.0218})$ $pH = 3.14 + log(2.37)$ $pH = 3.14 + 0.374$ $pH = 3.51$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.