General Chemistry: Principles and Modern Applications (10th Edition)

Published by Pearson Prentice Hal
ISBN 10: 0132064529
ISBN 13: 978-0-13206-452-1

Chapter 17 - Additional Aspects of Acid-Base Equilibria - Exercises - Buffer Solution - Page 776: 9

Answer

(a) $pH = 4.64$ (b) $pH = 9.68$

Work Step by Step

(a) 1. Calculate the pKa Value $pKa = -log(Ka)$ $pKa = -log( 6.3 \times 10^{- 5})$ $pKa = 4.20$ 2. Check if the ratio is between 0.1 and 10: - $\frac{[Base]}{[Acid]} = \frac{0.033}{0.012}$ - 2.8: It is. 3. Check if the compounds exceed the $K_a$ by 100 times or more: - $ \frac{0.033}{6.3 \times 10^{-5}} = 524$ - $ \frac{0.012}{6.3 \times 10^{-5}} = 290$ 4. Using the Henderson–Hasselbalch equation: $pH = pKa + log(\frac{[Base]}{[Acid]})$ $pH = 4.20 + log(\frac{0.033}{0.012})$ $pH = 4.20 + log(2.8)$ $pH = 4.20 + 0.44$ $pH = 4.64$ (b) 1. Since $NH{_4}^+$ is the conjugate acid of $NH_3$ , we can calculate its $K_a$ by using this equation: $K_b * K_a = K_w = 10^{-14}$ $ 1.8\times 10^{- 5} * K_a = 10^{-14}$ $K_a = \frac{10^{-14}}{ 1.8\times 10^{- 5}}$ $K_a = 5.6\times 10^{- 10}$ 2. Calculate the pKa Value $pKa = -log(Ka)$ $pKa = -log( 5.6 \times 10^{- 10})$ $pKa = 9.25$ 3. Check if the ratio is between 0.1 and 10: - $\frac{[Base]}{[Acid]} = \frac{0.409}{0.153}$ - 2.67: It is. 4. Check if the compounds exceed the $K_a$ by 100 times or more: - $ \frac{0.409}{5.6 \times 10^{-10}} = 7.29\times 10^{8}$ - $ \frac{0.153}{5.6 \times 10^{-10}} = 2.73\times 10^{8}$ 5. Using the Henderson–Hasselbalch equation: $pH = pKa + log(\frac{[Base]}{[Acid]})$ $pH = 9.25 + log(\frac{0.409}{0.153})$ $pH = 9.25 + log(2.67)$ $pH = 9.25 + 0.426$ $pH = 9.68$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.