General Chemistry: Principles and Modern Applications (10th Edition)

Published by Pearson Prentice Hal
ISBN 10: 0132064529
ISBN 13: 978-0-13206-452-1

Chapter 16 - Acids and Bases - Example 16-4 - Calculating the pH of an Aqueous Solution of a Strong Base - Page 708: Practice Example A

Answer

$$pH = 11.52 $$

Work Step by Step

1. Calculate the molar mass: $ Mg(OH)_2 $ : ( 24.31 $\times$ 1 )+ ( 1.008 $\times$ 2 )+ ( 16.00 $\times$ 2 )= 58.33 g/mol 2. Use the information as conversion factors to find the molarity of this solution: $$\frac{ 9.63 mg \space Mg(OH)_2 }{100 \space mL \space solution} \times \frac{1 \space g}{1000 \space mg} \times \frac{1 \space mol \space Mg(OH)_2 }{ 58.33 \space g \space Mg(OH)_2 } \times \frac{1000 \space mL}{1 \space L} = 1.65 \times 10^{-3} \space M$$ 3. Since each $Mg(OH)_2$ has 2 $OH^-$ $[OH^-] = 2[Mg(OH)_2] = 2(1.65 \times 10^{-3} \space M) = 3.30 \times 10^{-3} \space M$ 4. Calculate the pH: $$[H_3O^+] = \frac{1.0 \times 10^{-14}}{[OH^-]} = \frac{1.0 \times 10^{-14}}{ 3.30 \times 10^{-3} } = 3.0 \times 10^{-12} \space M$$ $$pH = -log[H_3O^+] = -log( 3.0 \times 10^{-12} ) = 11.52 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.