Answer
The radius of a rhodium atom in angstroms and in meters are equal to, respectively, $1.4 \times 10^{-10} \space m$ and $1.4 \space Å$
Work Step by Step
1. Identify the conversion factors:
- Centimeters to meters: $\frac{1 \space m}{100 \space cm }$
- Meters to angstroms: $\frac{1 \space Å}{10^{-10} \space m}$
2. Calculate the radius of that atom in angstroms and in meters:
$r = \frac{d}{2}$
$r = \frac{2.7 \times 10^{-8} \space cm}{2} \times \frac{1 \space m}{100 \space cm } = 1.4 \times 10^{-10} \space m$
$r = \frac{2.7 \times 10^{-8} \space cm}{2} \times \frac{1 \space m}{100 \space cm } \times \frac{1 \space Å}{10^{-10} \space m} = 1.4 \space Å$