Chemistry: The Molecular Science (5th Edition)

Published by Cengage Learning
ISBN 10: 1285199049
ISBN 13: 978-1-28519-904-7

Chapter 15 - Additional Aqueous Equilibria - Problem Solving Practice 15.15 - Page 691: a

Answer

$AgCl$ will be the first to precipitate.

Work Step by Step

For $AgCl$ to precipitate: 1. Write the $K_{sp}$ expression: $ AgCl(s) \lt -- \gt 1Ag^{+}(aq) + 1Cl^{-}(aq)$ $1.8 \times 10^{-10} = [Ag^{+}]^ 1[Cl^{-}]^ 1$ $1.8 \times 10^{-10} = (0.01)^ 1( 1S)^ 1$ 2. Find the necessary chloride ion concentration: $1.8 \times 10^{-10}= 0.01 \times ( 1S)^ 1$ $ \frac{1.8 \times 10^{-10}}{0.01} = ( 1S)^ 1$ $1.8 \times 10^{-8} = S$ ------- 1. Write the $K_{sp}$ expression: $ PbCl_2(s) \lt -- \gt 1Pb^{2+}(aq) + 2Cl^{-}(aq)$ $1.6 \times 10^{-5} = [Pb^{2+}]^ 1[Cl^{-}]^ 2$ $1.6 \times 10^{-5} = (0.1)^ 1([Cl^-])^ 2$ 2. Find the necessary chloride ion concentration: $1.6 \times 10^{-5}= (0.1)^ 1 \times ([Cl^-])^ 2$ $ \frac{1.6 \times 10^{-5}}{0.1} = ([Cl^-])^ 2$ $1.6 \times 10^{-4} = ([Cl^-])^ 2$ $ \sqrt [ 2] {1.6 \times 10^{-4}} = [Cl^-]$ $0.013 = [Cl^-]$ Since $AgCl$ needs less chloride ions, it will precipitate first.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.