Answer
(i)$$Rate = 3.34 \times 10^{-7} mol L^{-1} s^{-1}$$
(ii)$$Rate = 3.80 \times 10^{-7} mol L^{-1} s^{-1}$$
(iii)$$Rate = 4.768 \times 10^{-7} mol L^{-1} s^{-1}$$
Work Step by Step
1. Calculate $\Delta[Cv^+]$ and $\Delta t$:
(i) $$\Delta[Cv^+] = 0.793 \times 10^{-5} - 1.460 \times 10^{-5} = -6.67 \times 10^{-6}$$
$$\Delta t = 60.0 s - 40.0 s = 20.0 s$$
(ii) $$\Delta[Cv^+] = 0.429 \times 10^{-5} - 2.710 \times 10^{-5} = -2.281 \times 10^{-5}$$
$$\Delta t = 80.0 s - 20.0 s = 60.0 s$$
(iii) $$\Delta[Cv^+] = 0.232 \times 10^{-5} - 5.000 \times 10^{-5} = -4.768 \times 10^{-5}$$
$$\Delta t = 100.0 s - 0.0 s = 100.0 s$$
2. Calculate each rate:
(i)$$Rate = -\frac{-6.67 \times 10^{-6}}{20.0} = 3.34 \times 10^{-7} mol L^{-1} s^{-1}$$
(ii)$$Rate = -\frac{-2.281 \times 10^{-5}}{60.0} = 3.80 \times 10^{-7} mol L^{-1} s^{-1}$$
(iii)$$Rate = -\frac{-4.768 \times 10^{-5}}{100.0} = 4.768 \times 10^{-7} mol L^{-1} s^{-1}$$