Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 7 - Exercises - Page 332: 71

Answer

$n=2 $

Work Step by Step

The change in energy when the transition occurs is equal to the energy of the photon emitted. $\implies \frac{hc}{\lambda}=2.18\times10^{-18}\,J(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}})$ $\implies \frac{(6.626\times10^{-34}\,J\cdot s)(3.00\times10^{8}\,m/s)}{397\times10^{-9}\,m}=$ $2.18\times10^{-18}\,J(\frac{1}{n_{f}^{2}}-\frac{1}{7^{2}})$ $\implies 5.007\times10^{-19}\,J+\frac{2.18\times10^{-18}\,J}{49}=\frac{2.18\times10^{-18}\,J}{n_{f}^{2}}$ $\implies 5.4519\times10^{-19}\,J=\frac{2.18\times10^{-18}\,J}{n_{f}^{2}}$ Then, $n_{f}^{2}=\frac{2.18\times10^{-18}\,J}{5.4519\times10^{-19}\,J}=4$ $\implies n_{f}=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.