Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 4 - Exercises - Page 189: 69

Answer

$Pb(NO_3)_2$ is the limiting reactant. Theoretical yield: 3.75 g Percent yield: 65.3%

Work Step by Step

- Find the amount of moles in $ 25.0 $ mL of $ 1.20 $ M $ KCl $: $$ 25.0 \space mL \times \frac{1 \space L}{1000 \space mL} \times \frac{ 1.20 \space mol \space KCl }{1 \space L} = 0.0300 \space mol \space KCl $$ - Use the balance coefficients of the equation to calculate the amount of product formed. $$ 0.0300 \space mol \space KCl \times \frac{ 1 \space mol \space PbCl_2 }{ 2 \space mol \space KCl } = 0.0150 \space mol \space PbCl_2 $$ - Find the amount of moles in $ 15.0 $ mL of $ 0.900 $ M $ Pb(NO_3)_2 $: $$ 15.0 \space mL \times \frac{1 \space L}{1000 \space mL} \times \frac{ 0.900 \space mol \space Pb(NO_3)_2 }{1 \space L} = 0.0135 \space mol \space Pb(NO_3)_2 $$ - Use the balance coefficients of the equation to calculate the amount of product formed. $$ 0.0135 \space mol \space Pb(NO_3)_2 \times \frac{ 1 \space mol \space PbCl_2 }{ 1 \space mol \space Pb(NO_3)_2 } = 0.0135 \space mol \space PbCl_2 $$ - Since $ Pb(NO_3)_2 $ produces less moles of products, it is the limiting reactant, and the theoretical yield is equal to $ 0.0135 \space mol \space PbCl_2 $. - Calculate or find the molar mass for $ PbCl_2 $: $ PbCl_2 $ : ( 35.45 $\times$ 2 )+ ( 207.2 $\times$ 1 )= 278.1 g/mol - Using the molar mass as a conversion factor, find the mass in g: $$ 0.0135 \space mole \times \frac{ 278.1 \space g}{1 \space mole} = 3.75 \space g$$ $$Percent \space yield = \frac{ 2.45 \space g}{ 3.75 \space g} \times 100\% = 65.3 \space \%$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.