Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 4 - Exercises - Page 187: 31

Answer

9.3 g of $HBr$ are needed to dissolve 3.2 g of pure iron. This reaction produces 0.12 g of $H_2$

Work Step by Step

1. $ Fe $ : 55.85 g/mol $$ \frac{1 \space mole \space Fe }{ 55.85 \space g \space Fe } \space and \space \frac{ 55.85 \space g \space Fe }{1 \space mole \space Fe }$$ $ HBr $ : ( 79.90 $\times$ 1 )+ ( 1.008 $\times$ 1 )= 80.91 g/mol $$ \frac{1 \space mole \space HBr }{ 80.91 \space g \space HBr } \space and \space \frac{ 80.91 \space g \space HBr }{1 \space mole \space HBr }$$ $$ 3.2 \space g \space Fe \times \frac{1 \space mole \space Fe }{ 55.85 \space g \space Fe } \times \frac{ 2 \space moles \space HBr }{ 1 \space mole \space Fe } \times \frac{ 80.91 \space g \space HBr }{1 \space mole \space HBr } = 9.3 \space g \space HBr $$ 2. $$ \frac{1 \space mole \space H_2 }{ 2.016 \space g \space H_2 } \space and \space \frac{ 2.016 \space g \space H_2 }{1 \space mole \space H_2 }$$ $$ 3.2 \space g \space Fe \times \frac{1 \space mole \space Fe }{ 55.85 \space g \space Fe } \times \frac{ 1 \space mole \space H_2 }{ 1 \space mole \space Fe } \times \frac{ 2.016 \space g \space H_2 }{1 \space mole \space H_2 } = 0.12 \space g \space H_2 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.