Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 16 - Exercises - Page 773: 86

Answer

0.60 mL of this 15.0 % NaOH solution is needed to produce 5.00 L of an NaOH solution with pH = 10.8

Work Step by Step

1. Find the hydroxide concentration: $$[H_3O^+] = 10^{-pH} = 10^{-10.8} = 2.0 \times 10^{-11} \space M$$ $$[OH^-] = \frac{1.0 \times 10^{-14}}{[H_3O^+]} = \frac{1.0 \times 10^{-14}}{ 2.0 \times 10^{-11} } = 5.0 \times 10^{-4} \space M$$ 2. Since NaOH is a strong base: $ [NaOH] = [OH^-] = 5.0 \times 10^{-4} \space M$ 3. Calculate the molar mass for NaOH: $ NaOH $ : ( 22.99 $\times$ 1 )+ ( 1.008 $\times$ 1 )+ ( 16.00 $\times$ 1 )= 40.00 g/mol 4. Find the amount of moles necessary for 5.00 L of solution: $$5.00 \space L \times \frac{5.0 \times 10^{-4} \space mol}{1 \space L} = 2.5 \times 10^{-3} \space moles$$ 5. Find the volume of the initial solution that has this amount of moles: $$2.5 \times 10^{-3} \space mol \space NaOH \times \frac{40.00 \space g \space NaOH}{1 \space mol \space NaOH} \times \frac{100 \space g \space solution}{15.0 \space g \space NaOH} \times \frac{1 \space mL \space solution}{1.116 \space g \space solution} = 0.60 \space mL \space solution$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.