Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 1 - Exercises - Page 42: 141

Answer

13 percent

Work Step by Step

Since \[1\text{ lb}=453.59\text{ g}\], convert the mass of the person into grams as follows: \[\begin{align} & m=155\text{ lb}\left( \frac{453.59\text{ g}}{1\text{ lb}} \right) \\ & =7.03\times {{10}^{4}}\text{ g} \end{align}\] Now, the volume of the person is calculated as follows: \[V=\frac{m}{d}\] Here, m is the mass and d is the density. Substitute \[7.03\times {{10}^{4}}\text{ g}\] for m and \[1.0\text{ g/c}{{\text{m}}^{\text{3}}}\] for d: \[\begin{align} & V=\frac{7.03\times {{10}^{4}}\text{ g}}{1.0\text{ g/c}{{\text{m}}^{\text{3}}}} \\ & =7.03\times \text{1}{{\text{0}}^{4}}\text{ c}{{\text{m}}^{3}} \end{align}\] Now, the height of the person is \[4\text{ ft}\]. One foot is equal to 30.48 cm. Thus, \[\begin{align} & h=4\text{ ft}\left( \frac{30.48\text{ cm}}{1\text{ ft}} \right) \\ & =121.92\text{ cm} \end{align}\] Now, the volume of the cylinder is as follows: \[V=\pi {{r}^{2}}h\] Rearrange the equation: \[{{r}^{2}}=\frac{V}{\pi h}\] Substitute \[121.92\text{ cm}\] for h and \[7.03\times \text{1}{{\text{0}}^{4}}\text{ c}{{\text{m}}^{3}}\] for V: \[\begin{align} & {{r}^{2}}=\frac{7.03\times \text{1}{{\text{0}}^{4}}\text{ c}{{\text{m}}^{3}}}{\left( 3.14 \right)\left( 121.92\text{ cm} \right)} \\ & r=\sqrt{\frac{7.03\times \text{1}{{\text{0}}^{4}}\text{ c}{{\text{m}}^{3}}}{\left( 3.14 \right)\left( 121.92\text{ cm} \right)}} \\ & =13.55\text{ cm} \end{align}\] The person is modeled by a cylinder. Thus, the waist of the person is equal to the circumference of the circle. Thus, the waist is calculated as follows: \[w=2\pi r\] Substitute \[13.55\text{ cm}\] for r: \[\begin{align} & {{w}_{1}}=2\left( 3.14 \right)\left( 13.55\text{ cm} \right) \\ & =85.1\text{ cm} \end{align}\] Now, calculate the volume of the fat as follows: \[\begin{align} & {{V}_{\text{f}}}=\left( \frac{40.0\text{ lb}}{0.918\text{ g/c}{{\text{m}}^{\text{3}}}} \right)\left( \frac{453.59\text{ g}}{1\text{ lb}} \right) \\ & =1.98\times {{10}^{4}}\text{ c}{{\text{m}}^{3}} \end{align}\] The total volume of the person is the sum of the volume of the person and the volume of the fat. Thus, \[\begin{align} & {{V}_{\text{T}}}=\left( 7.03\times {{10}^{4}}+1.98\times {{10}^{4}} \right)\text{ c}{{\text{m}}^{3}} \\ & =9.01\times {{10}^{4}}\text{ c}{{\text{m}}^{3}} \end{align}\] Now, the radius of cylinder is as follows: \[\begin{align} & {{r}^{2}}=\frac{9.01\times \text{1}{{\text{0}}^{4}}\text{ c}{{\text{m}}^{3}}}{\left( 3.14 \right)\left( 121.92\text{ cm} \right)} \\ & r=\sqrt{\frac{9.01\times \text{1}{{\text{0}}^{4}}\text{ c}{{\text{m}}^{3}}}{\left( 3.14 \right)\left( 121.92\text{ cm} \right)}} \\ & =15.34\text{ cm} \end{align}\] Now, as the waist of the person is equal to circumference of the circle with radius r, \[\begin{align} & {{w}_{2}}=2\left( 3.14 \right)\left( 15.34\text{ cm} \right) \\ & =96.34\text{ cm} \end{align}\] Now, the percentage increase in the waist size is calculated as follows: \[\text{percentage}\,=\frac{{{w}_{2}}-{{w}_{1}}}{{{w}_{1}}}\times 100\] Substitute \[96.34\text{ cm}\] for \[{{w}_{2}}\] and \[\text{85}\text{.1 cm}\] for \[{{w}_{1}}\]: \[\begin{align} & \text{percentage}\,=\frac{96.34\text{ cm}-85.1\text{ cm}}{\text{85}\text{.1 cm}}\times 100 \\ & =13\,\text{percent} \end{align}\] The percentage increase in the waist is 13.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.