Chemistry: Atoms First (2nd Edition)

Published by Cengage Learning
ISBN 10: 1305079248
ISBN 13: 978-1-30507-924-3

Chapter 13 - Exercises - Page 575d: 79

Answer

$[Initial HCOOH] = 0.02411M$

Work Step by Step

1. Find the $[H_3O^+]$ value: $[H_3O^+] = 10^{-pH}$ $[H_3O^+] = 10^{- 2.7}$ $[H_3O^+] = 1.995 \times 10^{- 3}$ 2. Drawing the equilibrium (ICE) table we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [HCOO^-] = x = 1.995 \times 10^{-3}$ -$[HCOOH] = [HCOOH]_{initial} - x$ 3. Now, use the Ka and x values and equation to find the initial concentration value. $Ka = \frac{[H_3O^+][HCOO^-]}{ [Initial HCOOH] - x}$ $ 1.8\times 10^{- 4}= \frac{[x^2]}{ [Initial HCOOH] - x}$ $ 1.8\times 10^{- 4}= \frac{( 1.995\times 10^{- 3})^2}{[Initial HCOOH] - 1.995\times 10^{- 3}}$ $[Initial HCOOH] - 1.995\times 10^{- 3} = \frac{ 3.981\times 10^{- 6}}{ 1.8\times 10^{- 4}}$ $[Initial HCOOH] - 1.995\times 10^{- 3} = 0.02212$ $[Initial HCOOH] = 0.02212 + 1.995\times 10^{- 3}$ $[Initial HCOOH] = 0.02411$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.