Chemistry: A Molecular Approach (3rd Edition)

Published by Prentice Hall
ISBN 10: 0321809246
ISBN 13: 978-0-32180-924-7

Chapter 14 - Sections 14.1-14.9 - Exercises - Problems by Topic - Page 691: 61b

Answer

$[A] = 0.90 \space M$ $[B] =0.095 \space M$ $[C] = 0.095 \space M$

Work Step by Step

1. Write the $K_c$ expression for this reaction: $$K_c = \frac{[Products]}{[Reactants]} = \frac{[B][C]}{[A]}$$ 2. Draw the equilibrium table: \begin{matrix} & [A] & [B] & [C]\\ Initial & 1.0 \space M & 0 & 0 \\ Change & -x & + x & + x\\ Equilibrium & 1.0 \space M - x & x & x \end{matrix} 3. Substitute the concentrations into the expression and solve for x: $$K_c = 0.010 = \frac{(x)(x)}{1.0 -x}$$ $$0.010(1.0 -x)= x^2$$ $$0.010 - 0.010x -x^2 = 0$$ $$x_1 = \frac{-(-0.010) + \sqrt {(-0.010)^2 - 4(0.010)(-1)}}{2(-1)} \approx -0.105$$ $$x_2= \frac{-(-0.010) - \sqrt {(-0.010)^2 - 4(0.010)(-1)}}{2(-1)} \approx 0.095$$ Since the concentration can't be negative, $x_1$ is invalid. So $x = 0.095$ Therefore: $[A] = 1.0 \space M - x = (1.0 -0.095) \space M = 0.90 \space M$ $[B] = [C] =x = 0.095 \space M$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.