Answer
Percent yield: $62.2\%$
Work Step by Step
1. Calculate the number of moles of $C_2H_4$:
12.01* 2 + 1.008* 4 = 28.05g/mol
$4.6g \times \frac{1 mol}{ 28.05g} = 0.164mol (C_2H_4)$
The given equation is already balanced; therefore:
The ratio of $C_2H_4$ to $C_2H_6O$ is 1 to 1:
$0.164 mol (C_2H_4) \times \frac{ 1 mol(C_2H_6O)}{ 1 mol (C_2H_4)} = 0.164mol (C_2H_6O)$
2. Calculate the mass of $C_2H_6O$:
12.01* 2 + 1.008* 6 + 16* 1 = 46.07g/mol
$0.164 mol \times \frac{ 46.07 g}{ 1 mol} = 7.56g (C_2H_6O)$
3. Now, calculate the percent yield:
$\frac{4.7g}{7.56g} \times 100\% = 62.2\%$