Chemistry (7th Edition)

Published by Pearson
ISBN 10: 0321943171
ISBN 13: 978-0-32194-317-0

Chapter 16 - Applications of Aqueous Equilibria - Worked Example - Page 667: 7

Answer

Initial buffer: $pH = 3.76$ (a) $pH = 3.71$ (b) $pH = 3.87$

Work Step by Step

1. Drawing the ICE table, we get these concentrations at the equilibrium: $HF(aq) + H_2O(l) \lt -- \gt F^-(aq) + H_3O^+(aq)$ Remember: Reactants at equilibrium = Initial Concentration - x And Products = Initial Concentration + x $[HF] = 0.25 M - x$ $[F^-] = 0.5M + x$ $[H_3O^+] = 0 + x$ 2. Calculate 'x' using the $K_a$ expression. $ 3.5\times 10^{- 4} = \frac{[F^-][H_3O^+]}{[HF]}$ $ 3.5\times 10^{- 4} = \frac{( 0.5 + x )* x}{ 0.25 - x}$ Considering 'x' has a very small value. $ 3.5\times 10^{- 4} = \frac{ 0.5 * x}{ 0.25}$ $ 3.5\times 10^{- 4} = 2x$ $\frac{ 3.5\times 10^{- 4}}{ 2} = x$ $x = 1.75\times 10^{- 4}$ Percent dissociation: $\frac{ 1.75\times 10^{- 4}}{ 0.25} \times 100\% = 0.07\%$ x = $[H_3O^+]$ $[HF] = 0.25 M - x = 0.25 M - 1.75 \times 10^{-4}M \approx 0.25M$ $[F^-] = 0.5M + x = 0.25 M + 1.75 \times 10^{-4}M \approx 0.50M$ $[H_3O^+] = 0 + x = 1.75 \times 10^{-4}M$ 3. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 1.75 \times 10^{- 4})$ $pH = 3.757 \approx 3.76$ --- $(a)$ 4. Since we are adding a strong acid, this reaction will occur: $F^-(aq) + H_3O^+(aq) -- \gt HF(aq) + H_2O(l)$ And these are the concentrations after this reaction: Remember: Reactants at equilibrium = Initial Concentration - y And Products = Initial Concentration + y Concentration (Added acid) = $\frac{n(moles)}{volume(L)} = \frac{ 0.002}{ 0.1} = 0.02$ Since $HNO_3$ is a strong base, y = $[HNO_3] = 0.02M$ $[HF] = 0.25 M + 0.02 = 0.27M$ $[F^-] = 0.5M - 0.02 = 0.48M$ 5. Now, calculate the hydronium ion concentration after the addition of the $HNO_3$: $[H_3O^+] = Ka * (\frac{[HF]}{[F^-]})$ $[H_3O^+] = 3.5 \times 10^{-4} * \frac{0.27}{0.48}$ $[H_3O^+] = 3.5 \times 10^{-4} * 0.563$ $[H_3O^+] = 1.97 \times 10^{-4}$ 6. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 1.97 \times 10^{- 4})$ $pH = 3.706 \approx 3.71$ $(b)$ 4. Since we are adding a strong base, this reaction will occur: $HF(aq) + OH^-(aq) -- \gt F^-(aq) + H_2O(l)$ And these are the concentrations after this reaction: Remember: Reactants at equilibrium = Initial Concentration - y And Products = Initial Concentration + y Concentration (Added base) = $\frac{n(moles)}{volume(L)} = \frac{ 0.004}{ 0.1} = 0.04$ Since $KOH$ is a strong base, y = $[KOH] = 0.04M$ $[HF] = 0.25 M - 0.04 = 0.21M$ $[F^-] = 0.5M + 0.04 = 0.54M$ 5. Now, calculate the hydronium ion concentration after the addition of the $KOH$: $[H_3O^+] = Ka * (\frac{[HF]}{[F^-]})$ $[H_3O^+] = 3.5 \times 10^{-4} * \frac{0.21}{0.54}$ $[H_3O^+] = 3.5 \times 10^{-4} * 0.389$ $[H_3O^+] = 1.36 \times 10^{-4}$ 6. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 1.36 \times 10^{- 4})$ $pH = 3.866 \approx 3.87$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.