Chemistry (7th Edition)

Published by Pearson
ISBN 10: 0321943171
ISBN 13: 978-0-32194-317-0

Chapter 16 - Applications of Aqueous Equilibria - Worked Example - Page 663: 3

Answer

$[HCN] \approx 0.025M$ $[CN^-] \approx 0.010M$ $[H_3O^+] = 1.2\times 10^{- 9}M$ $[OH^-] = 8.3 \times 10^{-6} M$ $pH = 8.91$ Percent dissociation: $4.9\times 10^{- 6}\%$

Work Step by Step

1. Drawing the ICE table we get these concentrations at the equilibrium: $HCN(aq) + H_2O(l) \lt -- \gt CN^-(aq) + H_3O^+(aq)$ Remember: Reactants at equilibrium = Initial Concentration - x And Products = Initial Concentration + x $[HCN] = 0.025 M - x$ $[CN^-] = 0.01M + x$ $[H_3O^+] = 0 + x$ 2. Calculate 'x' using the $K_a$ expression. $ 4.9\times 10^{- 10} = \frac{[CN^-][H_3O^+]}{[HCN]}$ $ 4.9\times 10^{- 10} = \frac{( 0.01 + x )* x}{ 0.025 - x}$ Considering 'x' has a very small value. $ 4.9\times 10^{- 10} = \frac{ 0.01 * x}{ 0.025}$ $ 4.9\times 10^{- 10} = 0.4x$ $\frac{ 4.9\times 10^{- 10}}{ 0.4} = x$ $x = 1.2\times 10^{- 9}$ Percent dissociation: $\frac{ 1.2\times 10^{- 9}}{ 0.025} \times 100\% = 4.9\times 10^{- 6}\%$ x = $[H_3O^+]$ $[HCN] = 0.025M - 1.2\times 10^{- 9}M \approx 0.025M$ $[CN^-] = 0.010M - 1.2\times 10^{- 9}M \approx 0.010M$ $[H_3O^+] = 1.2\times 10^{- 9}M$ 3. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 1.2 \times 10^{- 9})$ $pH = 8.91$ 4. Calculate the hydroxide ion concentration: $[H_3O^+] * [OH^-] = Kw = 10^{-14}$ $1.2 \times 10^{-9} * [OH^-] = 10^{-14}$ $[OH^-] = \frac{10^{-14}}{1.2 \times 10^{-9}}$ $[OH^-] = 8.3 \times 10^{-6} M$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.