Chemistry (7th Edition)

Published by Pearson
ISBN 10: 0321943171
ISBN 13: 978-0-32194-317-0

Chapter 15 - Aqueous Equilibria: Acids and Bases - Section Problems - Page 651: 86

Answer

$pH = 3.197$

Work Step by Step

1. Calculate the molar mass: 12.01* 6 + 1.01* 8 + 16* 6 = 176.14g/mol 2. Calculate the number of moles $n(moles) = \frac{mass(g)}{mm(g/mol)}$ $n(moles) = \frac{ 0.25}{ 176.14}$ $n(moles) = 1.419\times 10^{- 3}$ 3. Find the concentration in mol/L: $C(mol/L) = \frac{n(moles)}{volume(L)}$ $ C(mol/L) = \frac{ 1.419\times 10^{- 3}}{ 0.25} $ $C(mol/L) = 5.677\times 10^{- 3}$ 4. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium:** The image is in the end of this answer. -$[H_3O^+] = [C_6H_7{O_6}^-] = x$ -$[C_6H_8O_6] = [C_6H_8O_6]_{initial} - x = 5.677 \times 10^{- 3} - x$ For approximation, we consider: $[C_6H_8O_6] = 5.677 \times 10^{- 3}M$ 5. Now, use the Ka value and equation to find the 'x' value. $Ka = \frac{[H_3O^+][C_6H_7{O_6}^-]}{ [C_6H_8O_6]}$ $Ka = 8 \times 10^{- 5}= \frac{x * x}{ 5.677\times 10^{- 3}}$ $Ka = 8 \times 10^{- 5}= \frac{x^2}{ 5.677\times 10^{- 3}}$ $ 4.542 \times 10^{- 7} = x^2$ $x = 6.739 \times 10^{- 4}$ Percent dissociation: $\frac{ 6.739 \times 10^{- 4}}{ 5.677\times 10^{- 3}} \times 100\% = 11.87\%$ %dissociation < 5% : Inappropriate approximation, so, we will have to consider the '-x' in the acid concentration: $Ka = 8 \times 10^{- 5}= \frac{x^2}{ 5.677 \times 10^{- 3}- x}$ $ 4.542 \times 10^{- 7} - 8 \times 10^{- 5}x = x^2$ $ 4.542 \times 10^{- 7} - 8 \times 10^{- 5}x - x^2 = 0$ $\Delta = (- 8 \times 10^{- 5})^2 - 4 * (-1) *( 4.542 \times 10^{- 7})$ $\Delta = 6.4 \times 10^{- 9} + 1.817 \times 10^{- 6} = 1.823 \times 10^{- 6}$ $x_1 = \frac{ - (- 8 \times 10^{- 5})+ \sqrt { 1.823 \times 10^{- 6}}}{2*(-1)}$ or $x_2 = \frac{ - (- 8 \times 10^{- 5})- \sqrt { 1.823 \times 10^{- 6}}}{2*(-1)}$ $x_1 = - 7.151 \times 10^{- 4} (Negative)$ $x_2 = 6.351 \times 10^{- 4}$ - The concentration can't be negative, so $[H_3O^+]$ = $x_2$ 6. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 6.351 \times 10^{- 4})$ $pH = 3.197$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.