Answer
$1.88\times10^{3}\, m/s$
Work Step by Step
$\lambda=\frac{h}{mv}$ where $\lambda $ is the wavelength, $h$ is the Planck's constant, $m$ is the mass and $v$ is the velocity.
$\implies v=\frac{h}{m\lambda}=\frac{6.626\times10^{-34}\,J\cdot s}{(6.64477\times10^{-27}\,kg)(0.529\times10^{-10}\,m)}$
$=1.88\times10^{3}\, m/s$