Answer
$\angle B = 23.75^{\circ}$
$a \approx 4663$ yd
$b \approx 1955$ yd
Work Step by Step
1. Find $\angle B$
$\angle A = 180 - (\angle A + \angle C)$
$= 180 - (106.1 + 50.15)$
$= 180 - 156.25$
$= 23.75^{\circ}$
2. Find $a$
$\frac{a}{sin(A)} = \frac{c}{sin(C)}$
$\frac{a}{sin(106.1)} = \frac{3726}{sin(50.15)}$
$a = \frac{3726sin(106.1)}{sin(50.15)}$
by GDC / calculator
$a = 4662.952...$
$a \approx 4663$ yd
3. Find $b$
$\frac{b}{sin(B)} = \frac{c}{sin(C)}$
$\frac{b}{sin(23.75)} = \frac{3726}{sin(50.15)}$
$b = \frac{3726sin(23.75)}{sin(50.15)}$
by GDC / calculator
$b = 1954.6515...$
$b \approx 1955$ yd