Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.2 Trigonometric Equations I - 6.2 Exercises - Page 268: 65a

Answer

$$t=\frac{\pi}{3}\approx1.407$$

Work Step by Step

$$s(t)=\sin t+2\cos t$$ For $s(t)=\frac{2+\sqrt3}{2}$, we would have the equation: $$\sin t+2\cos t=\frac{2+\sqrt3}{2}$$ - We do not have any identities that can relate $\sin t$ and $\cos t$, but we have this identity: $\sin^2 t+\cos^2t=1$, which might be useful. So the strategy now is to square both sides. Yet before doing so, we rearrange the equation: $$\sin t=\frac{2+\sqrt3}{2}-2\cos t$$ Now square both sides: $$\sin^2t=\frac{(2+\sqrt3)^2}{4}-2\times\frac{2+\sqrt3}{2}\times2\cos t+4\cos^2t$$ $$\sin^2t=\frac{7+4\sqrt3}{4}-2(2+\sqrt3)\cos t+4\cos^2t$$ Now apply $\sin^2t=1-\cos^2t$: $$1-\cos^2t=\frac{7+4\sqrt3}{4}-2(2+\sqrt3)\cos t+4\cos^2t$$ $$5\cos^2t-2(2+\sqrt3)\cos t+\frac{3+4\sqrt3}{4}=0$$ We can treat the question as a quadratic formula, which $a=5, b=-2(2+\sqrt3), c=\frac{3+4\sqrt3}{4}$ - Find $\Delta$: $$\Delta=b^2-4ac$$ $$\Delta=4(2+\sqrt3)^2-4\times5\times\frac{3+4\sqrt3}{4}$$ $$\Delta=4(7+4\sqrt3)-5(3+4\sqrt3)$$ $$\Delta=28+16\sqrt3-15-20\sqrt3$$ $$\Delta=13-4\sqrt3$$ - Find $\cos t$: $$\cos t=\frac{-b\pm\sqrt\Delta}{2a}=\frac{2(2+\sqrt3)\pm\sqrt{13-4\sqrt3}}{10}$$ 1) For $\cos t=\frac{2(2+\sqrt3)+\sqrt{13-4\sqrt3}}{10}\approx0.993$ $$t=\cos^{-1}0.993\approx0.12$$ - Try back to $s(t)$: $$\sin0.12+2\cos0.12\approx2.105\ne\frac{2+\sqrt3}{2}$$ Therefore, $t=0.12$ would be eliminated. 2) For $\cos t=\frac{2(2+\sqrt3)-\sqrt{13-4\sqrt3}}{10}=\frac{1}{2}$ $$t=\cos^{-1}\frac{1}{2}=\frac{\pi}{3}$$ - Try back to $s(t)$: $$\sin\frac{\pi}{3}+2\cos\frac{\pi}{3}=\frac{\sqrt3}{2}+2\times\frac{1}{2}=\frac{\sqrt3}{2}+1=\frac{2+\sqrt3}{2}$$ Therefore, $t=\frac{\pi}{3}$ would be accepted. In conclusion, $$t=\frac{\pi}{3}\approx1.407$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.