Trigonometry (10th Edition)

Published by Pearson
ISBN 10: 0321671775
ISBN 13: 978-0-32167-177-6

Chapter 2 - Acute Angles and Right Triangles - Section 2.3 Finding Trigonometric Function Values Using a Calculator - 2.3 Exercises - Page 67: 74

Answer

The car is traveling at a speed of 77.8 mph when it hits the truck.

Work Step by Step

$V_1 = 90~mph$ We can convert $90~mph$ to units of feet/s: $V_1 = 90~mph\times \frac{1~hr}{3600~s}\times \frac{5280~ft}{1~mile} = 132~ft/s$ $D = \frac{1.05~(V_1^2-V_2^2)}{64.4~(K_1+K_2+sin~\theta)}$ $D~[64.4~(K_1+K_2+sin~\theta)] = 1.05~(V_1^2-V_2^2)$ $V_2^2 = V_1^2-\frac{D~[64.4~(K_1+K_2+sin~\theta)]}{1.05}$ $V_2 = \sqrt{V_1^2-\frac{D~[64.4~(K_1+K_2+sin~\theta)]}{1.05}}$ $V_2 = \sqrt{(132~ft/s)^2-\frac{(200~ft)~[64.4~(0.4+0.02+sin~(-3.5^{\circ})]}{1.05}}$ $V_2 = 114.1~ft/s$ We can convert $114.1~ft/s$ to units of mph: $V_2 = 114.1~ft/s \times \frac{3600~s}{1~hr}\times \frac{1~mile}{5280~ft} = 77.8~mph$ The car is traveling at a speed of 77.8 mph when it hits the truck.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.