Answer
The three solutions for the value of $x$ are:
$x = 1$
$x = \frac{-1 + \sqrt{3}~i}{2}$
$x = \frac{-1 - \sqrt{3}~i}{2}$
Work Step by Step
$x^3-1=0$
$(x-1)(x^2+x+1) = 0$
If $(x-1) = 0$, then $x = 1$
We can use the quadratic formula to find the solutions when $(x^2+x+1) = 0$:
$x = \frac{-1 \pm \sqrt{1^2-(4)(1)(1)}}{(2)(1)}$
$x = \frac{-1 \pm \sqrt{-3}}{2}$
$x = \frac{-1 \pm \sqrt{3}~i}{2}$
The three solutions for the value of $x$ are:
$x = 1$
$x = \frac{-1 + \sqrt{3}~i}{2}$
$x = \frac{-1 - \sqrt{3}~i}{2}$
These three solutions are equivalent to the three solutions found in Exercise 31.