Answer
$I = 1.185-0.136~i$
Work Step by Step
$I = \frac{E}{Z}$
$I = \frac{8~(cos~20^{\circ}+i~sin~20^{\circ})}{R+X_L~i}$
$I = \frac{8~(cos~20^{\circ}+i~sin~20^{\circ})}{6+3~i}$
$I = \frac{8~(cos~20^{\circ}+i~sin~20^{\circ})}{6+3~i}~\times~\frac{6-3~i}{6-3~i}$
$I = \frac{8~(6~cos~20^{\circ}+3~sin~20^{\circ}+i~6~sin~20^{\circ}-i~3~cos~20^{\circ})}{45}$
$I = \frac{8~(6.664216-0.766957~i)}{45}$
$I = 1.185-0.136~i$