Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 8 - Complex Numbers, Polar Equations, and Parametric Equations - Section 8.1 Complex Numbers - 8.1 Exercises - Page 365: 109

Answer

For any positive power, $n$, of $i$, the simplified form of $i^n$ will be $i^2$ raised to the Quotient times $i$ raised to the Remainder of the positive power, $n$, when divided by 2 respectively.

Work Step by Step

For any positive power, $n$, of $i$, let $n = 2Q + R$, where, $Q$ = Quotient and $R$ = Remainder of $n$ when divided by 2 respectively. For $i^n$, $i^n$ = $i^{2Q+R}$ = $i^{2Q} \cdot i^R$ (Rule of Exponents : Multiplication Rule) = $(i^2)^Q \cdot i^R$ (Rule of Exponents : Power of a Power Rule) So, for any positive power, $n$, of $i$, the simplified form of $i^n$ will be $i^2$ raised to the Quotient times $i$ raised to the Remainder of the positive power, $n$, when divided by 2 respectively.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.