Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 7 - Review Exercises - Page 349: 7

Answer

Given a, A, and C in triangle ABC, the values of side c, angle B, and side b have one possible value each. Therefore, the possibility of the ambiguous case does not exist.

Work Step by Step

If we are given a, A, and C in triangle ABC, then we can use the law of sines to find side c. Since the value of side c has one possible value, this case is not ambiguous. Angle B also has one possible value since $A+B+C = 180^{\circ}$. Then we can use the law of sines to find side b. Since the value of side b has one possible value, this case is not ambiguous.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.