Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 7 - Applications of Trigonometry and Vectors - Section 7.1 Oblique Triangles and the Law of Sines - 7.1 Exercises - Page 302: 25

Answer

$\angle A= 34.72^{\circ}$ $a \approx 3325$ ft $c \approx 5701$ ft

Work Step by Step

1. Find $\angle A$ $\angle A = 180 - (\angle B + \angle C)$ $= 180 - (42.88 + 102.40)$ $= 180 - 145.28$ $= 34.72^{\circ}$ 2. Find $a$ $\frac{a}{sin(A)} = \frac{b}{sin(B)}$ $\frac{a}{sin(34.72)} = \frac{3972}{sin(42.88)}$ $a = \frac{3972sin(34.72)}{sin(42.88)}$ by GDC / calculator $a = 3324.664...$ ft $a \approx 3325$ ft 3. Find $c$ $\frac{c}{sin(C)} = \frac{b}{sin(B)}$ $\frac{c}{sin(102.4)} = \frac{3972}{sin(42.88)}$ $c = \frac{3972sin(102.4)}{sin(42.88)}$ by GDC / calculator $c = 5701.0156...$ $c \approx 5701$ ft
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.