Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 6 - Inverse Circular Functions and Trigonometric Equations - Section 6.1 Inverse Circular Functions - 6.1 Exercises - Page 264: 19

Answer

arctan$ 0=0$

Work Step by Step

lnverse Tangent Function $y=\tan^{-1}x$ or $y=$ arctan $x$ means that $x=\tan y$, for $-\displaystyle \frac{\pi}{2} < y < \frac{\pi}{2}$. ---------- In the interval$\quad -\displaystyle \frac{\pi}{2} < y < \frac{\pi}{2}$ , we find $y=0$ to be such that $\tan 0=0$. So, $y=\arctan 0=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.