Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.6 Half-Angle Identities - 5.6 Exercises - Page 244: 66

Answer

$tan~18^{\circ} = \frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}} = 0.325$

Work Step by Step

$cos^2~x+sin^2~x = 1$ $cos~x = \sqrt{1-sin^2~x}$ We can find the value of $cos~18^{\circ}$: $cos~18^{\circ} = \sqrt{1-(sin~18^{\circ})^2}$ $cos~18^{\circ} = \sqrt{1-(\frac{\sqrt{5}-1}{4})^2}$ $cos~18^{\circ} = \sqrt{1-(\frac{6-2\sqrt{5}}{16})}$ $cos~18^{\circ} = \sqrt{\frac{10+2\sqrt{5}}{16}}$ $cos~18^{\circ} = \frac{\sqrt{10+2\sqrt{5}}}{4}$ We can find the value of $tan~18^{\circ}$: $tan~18^{\circ} = \frac{sin~18^{\circ}}{cos~18^{\circ}}$ $tan~18^{\circ} = \frac{\frac{\sqrt{5}-1}{4}}{\frac{\sqrt{10+2\sqrt{5}}}{4}}$ $tan~18^{\circ} = \frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$ $tan~18^{\circ} = 0.325$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.