Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.4 Sum and Difference Identities for Sine and Tangent - 5.4 Exercises - Page 228: 69

Answer

$$\frac{\sin(s-t)}{\sin t}+\frac{\cos(s-t)}{\cos t}=\frac{\sin s}{\sin t\cos t}$$ The equation is proved to be an identity.

Work Step by Step

$$\frac{\sin(s-t)}{\sin t}+\frac{\cos(s-t)}{\cos t}=\frac{\sin s}{\sin t\cos t}$$ The left side is more complicated, so it should be dealt with first $$\frac{\sin(s-t)}{\sin t}+\frac{\cos(s-t)}{\cos t}$$ $$=\frac{\sin s\cos t-\sin t\cos s}{\sin t}+\frac{\cos s\cos t+\sin s\sin t}{\cos t}$$ $$=\frac{(\sin s\cos t-\sin t\cos s)\cos t+(\cos s\cos t+\sin s\sin t)\sin t}{\sin t\cos t}$$ $$=\frac{\sin s\cos^2 t-\sin t\cos t\cos s+\sin t\cos t\cos s+\sin s\sin^2 t}{\sin t\cos t}$$ $$=\frac{\sin s\cos^2 t+\sin s\sin^2 t}{\sin t\cos t}$$ (2 products in the middle are eliminated) $$=\frac{\sin s(\cos^2 t+\sin^2 t)}{\sin t\cos t}$$ $$=\frac{\sin s\times 1}{\sin t\cos t}$$ (for $\sin^2 t+\cos^2 t=1$) $$=\frac{\sin s}{\sin t\cos t}$$ Therefore, the equation is indeed an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.