Answer
$$\frac{1+\cot\theta}{\cot\theta}=\tan\theta+1$$
Work Step by Step
$$A=\frac{1+\cot\theta}{\cot\theta}$$
$$A=\frac{1}{\cot\theta}+\frac{\cot\theta}{\cot\theta}$$
$$A=\frac{1}{\cot\theta}+1$$
- Reciprocal Identity:
$$\cot\theta=\frac{1}{\tan\theta}$$
So, we can rewrite like this:
$$\tan\theta=\frac{1}{\cot\theta}$$
And we replace into $A$:
$$A=\tan\theta+1$$