Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.1 Fundamental Identities - 5.1 Exercises - Page 200: 36

Answer

$$\cos\theta=-\frac{3}{5}$$ $$\tan\theta=\frac{4}{3}$$ $$\cot\theta=\frac{3}{4}$$ $$\sec\theta=-\frac{5}{3}$$ $$\csc\theta=-\frac{5}{4}$$

Work Step by Step

$$\sin\theta=-\frac{4}{5}\hspace{1.5cm}\cos\theta\lt0$$ 1) Find $\cos\theta$ - Pythagorean Identities: $$\cos^2\theta=1-\sin^2\theta=1-(-\frac{4}{5})^2=1-\frac{16}{25}=\frac{9}{25}$$ $$\cos\theta=\pm\frac{3}{5}$$ But since $\cos\theta\lt0$, $$\cos\theta=-\frac{3}{5}$$ 2) Find $\tan\theta$ and $\cot\theta$ - Quotient Identities: $$\tan\theta=\frac{\sin\theta}{\cos\theta}=\frac{-\frac{4}{5}}{-\frac{3}{5}}=\frac{4}{3}$$ $$\cot\theta=\frac{\cos\theta}{\sin\theta}=\frac{-\frac{3}{5}}{-\frac{4}{5}}=\frac{3}{4}$$ 3) Find $\sec\theta$ and $\csc\theta$ - Reciprocal Identities: $$\sec\theta=\frac{1}{\cos\theta}=\frac{1}{-\frac{3}{5}}=-\frac{5}{3}$$ $$\csc\theta=\frac{1}{\sin\theta}=\frac{1}{-\frac{4}{5}}=-\frac{5}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.