Answer
$3.46$ units
Work Step by Step
To determine the position at $t=1.25$, we need to substitute $t=1.25$ into the equation and solve:
$s(t)=-4\cos\frac{2\pi}{3}t$
$s(t)=-4\cos(\frac{2\pi}{3}\times1.25)$
$s(t)=-4\cos(\frac{2\pi}{3}\times1.25)$
$s(t)=-4\cos(2.618)$
$s(t)=-4(-\frac{\sqrt 3}{2})$
$s(t)=2\sqrt 3=3.46$ units