Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 3 - Review Exercises - Page 136: 58

Answer

$\color{blue}{s=\dfrac{2\pi}{3}}$

Work Step by Step

RECALL: (1) $\frac{\pi}{3}$ is a special angle and $\tan{(\frac{\pi}{3})}=\sqrt3$ (2) An angle and its reference angle either have the same trigonometric function values or they differ only in sign. The required value of $s$ is in the interval $\left[\dfrac{\pi}{2}, \pi\right]$, which is in Quadrant II. Note that the reference angle of $\dfrac{2\pi}{3}$ is $\dfrac{\pi}{3}$, and that since $\dfrac{2\pi}{3}$ is in Quadrant II, its tangent value is negative, Thus, if $\tan{s} = -\sqrt{3}$ and $s$ must be in $\left[\dfrac{\pi}{2}, \pi\right]$, then $\color{blue}{s=\dfrac{2\pi}{3}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.