Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 3 - Radian Measure and the Unit Circle - Section 3.3 The Unit Circle and Circular Functions - 3.3 Exercises - Page 123: 21

Answer

$-2$

Work Step by Step

RECALL: $\sin{s} = y \\\cos{s} = x \\\tan{s} = \frac{y}{x} \\\cot{s} = \frac{x}{y} \\\sec{s} = \frac{1}{x} \\\csc{s}=\frac{1}{y}$ (refer to Figure 11 on page 111 of the textbook) The angle $\frac{11\pi}{6}$ intersects the unit circle at the point $(\frac{\sqrt3}{2}, -\frac{1}{2})$. This point has: $x= \frac{\sqrt3}{2}$ $y=-\frac{1}{2}$ Thus, $\csc{\frac{11\pi}{6}} = \frac{1}{y}=\dfrac{1}{-\frac{1}{2}}=-2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.