Answer
$(x_Q,y_Q) = (181.34, 523.02)$
Work Step by Step
From part (a), the equation for $(x_Q,y_Q)$ is:
$(x_Q,y_Q) = (x_P+ d~sin~\theta,y_P+ d~cos~\theta)$
We can express the angle $\theta$ in degrees:
$\theta = 17^{\circ}19'22''$
$\theta = (17+\frac{19}{60}+\frac{22}{3600})^{\circ}$
$\theta = 17.323^{\circ}$
We can find $x_Q$:
$x_Q = x_P+ d~sin~\theta$
$x_Q = (123.62~ft)+ (193.86~ft)~sin~(17.323^{\circ})$
$x_Q = 181.34~ft$
We can find $x_Q$:
$y_Q = y_P+ d~cos~\theta$
$y_Q = (337.95~ft)+ (193.86~ft)~cos~(17.323^{\circ})$
$y_Q = 523.02~ft$
$(x_Q,y_Q) = (181.34, 523.02)$