Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 2 - Quiz (Sections 2.1-2.3) - Page 71: 7

Answer

$sin ~\theta = -\frac{\sqrt{3}}{2}$ $cos ~\theta = \frac{1}{2}$ $tan ~\theta = -\sqrt{3}$ $csc ~\theta = -\frac{2\sqrt{3}}{3}$ $sec ~\theta = 2$ $cot ~\theta = -\frac{\sqrt{3}}{3}$

Work Step by Step

$1020^{\circ}-(2)(360^{\circ}) = 300^{\circ} = 360^{\circ}-60^{\circ}$ The angle $1020^{\circ}$ makes an angle of $60^{\circ}$ below the positive x-axis. We can let $x=1$ and $y=-\sqrt{3}$. Then $r = 2$. We can find the values of the six trigonometric functions: $sin ~\theta = \frac{y}{r} = \frac{-\sqrt{3}}{2}$ $cos ~\theta = \frac{x}{r} = \frac{1}{2}$ $tan ~\theta = \frac{y}{x} = \frac{-\sqrt{3}}{1} = -\sqrt{3}$ $csc ~\theta = \frac{r}{y} = \frac{2}{-\sqrt{3}} = -\frac{2\sqrt{3}}{3}$ $sec ~\theta = \frac{r}{x} = \frac{2}{1} = 2$ $cot ~\theta = \frac{x}{y} = \frac{1}{-\sqrt{3}} = -\frac{\sqrt{3}}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.