Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 2 - Acute Angles and Right Triangles - Section 2.3 Finding Trigonometric Function Values Using a Calculator - 2.3 Exercises - Page 69: 84

Answer

$\theta_{2}=21.78^{\circ}$

Work Step by Step

Use Snell's Law, $\frac{c_{1}}{c_{2}}=\frac{\sin\theta_{1}}{\sin\theta_{2}}$ to solve for $\theta_{2}$. For this exercise we can assume, $c_{1}=3 \times 10^{8} m/s$ (the speed of light in the air) $c_{2}=2.254 \times 10^{8} m/s$ (the speed of light in water) $\theta_{1}=29.6^{\circ}$ Substituting in the formula, $\frac{c_{1}}{c_{2}}=\frac{\sin\theta_{1}}{\sin\theta_{2}}$ $\sin\theta_{2}=\sin\theta_{1}*\frac{c_{2}}{c_{1}}$ $\theta_{2}=\sin^{-1}(\sin\theta_{1}*\frac{c_{2}}{c_{1}})$ $\theta_{2}=\sin^{-1}(\sin(29.6^{\circ})*\frac{2.254 \times 10^{8}}{3 \times 10^{8}})$ $\theta_{2}=\sin^{-1}(0.3711)$ $\theta_{2}=21.78^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.