Answer
$0.1812,0.4562$
Work Step by Step
The formula for a binomial probability: $P(X=k)={n\choose k}p^k(1-p)^{n-k}$
Hence $P(X=0)={20\choose 0}0.01^0(1-0.01)^{20-0}\approx0.8179$
$P(X=0)={20\choose 0}0.03^0(1-0.03)^{20-0}\approx0.5438$
$P(\text{not A})=1-P(A)$, thus
$P(X\geq1)=1-P(X=0)=1-0.8179=0.1812$
$P(X\geq1)=1-P(X=0)=1-0.5438=0.4562$