Statistics (12th Edition)

Published by Pearson
ISBN 10: 0321755936
ISBN 13: 978-0-32175-593-3

Chapter 9 - Inferences Based on Two Samples - Exercises 9.1 - 9.29 - Applying the Concepts - Basic - Page 425: 9.18d

Answer

$s_{1} = \sqrt {\frac{(93 - 89.857) + .... + (86 - 89.857)} {7 - 1}} = 11.625$ $s_{2} = \sqrt {\frac{(118 - 99.625) + .... + (98 - 99.625)} {8 - 1}} = 27.3806$ $s_{p} =\sqrt \frac{(7 - 1)(11.625)^{2} + (8 - 1)(27.3806)^{2}}{7 + 8 - 2}$ $ = \sqrt \frac{(6)(135.1406) + (7)(749.697)}{13}$ $ = \sqrt \frac{(810.84375 +5247.8808}{13}$ = 21.588 Using students t distribution table for df = 13, we have: $t_{α/2} = 1.771$ $E = t_{α/2} . s_{p}. \sqrt {1/n_{1} + 1/n_{2}}$ $= 1.771 . 21.588 . \sqrt 15/56 = 19.787$ $(x̅_{1} - x̅_{2}) - E = (89.857 - 99.625) - 19.787 = -29.555$ $(x̅_{1} - x̅_{2}) + E = (89.857 - 99.625) + 19.787 = 10.0195$

Work Step by Step

As above
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.