Answer
$6$
Work Step by Step
Combinations Rule
$$\binom{N}{n} = \dfrac{N!}{n! (N-n)!}$$
${\displaystyle{\binom{6}{5}} = \dfrac{6!}{5! \, (6-5)!} = \dfrac{6!}{5! \, 1!} = \dfrac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(1)}}$
${\displaystyle{\binom{6}{5}} = \dfrac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(1)}} = \boxed{6}$