Answer
P($E_{3}$) = 0.25
Work Step by Step
Given:
P($E_{1}$)+P($E_{2}$)+P($E_{3}$)+P($E_{4}$)+P($E_{5}$) =1
P($E_{3}$)=P($E_{1}$)
Therefore, substituting the given values in the above equation,
P($E_{3}$)+0.1+P($E_{3}$)+0.2+0.1=1
2$\times$P($E_{3}$)= 1- 0.5
P($E_{3}$) = 0.5 $\div$ 2
P($E_{3}$) = 0.25